Using the package
Google INFORMATION_SCHEMA tables
Following models are available to query the INFORMATION_SCHEMA tables. They are materialized as ephemeral
in dbt so it acts as a "source" but let you access multiple multiple project based tables using a single ref
.
Example
You can use those models such as:
SELECT query FROM {{ ref('information_schema_jobs') }}
All available google related models
Here's the list (don't forget to prefix the following list by information_schema_
in your ref
call).
-
access_control
- object_privileges
-
bi_engine
- bi_capacities
- bi_capacity_changes
-
configuration
- effective_project_options
- organization_options
- organization_options_changes
- project_options
- project_options_changes
-
datasets
- links
- schemata
- schemata_options
- schemata_replicas
- shared_dataset_usage
-
jobs
- jobs
- jobs_by_folder
- jobs_by_organization
- jobs_by_project
- jobs_by_user
-
jobs_timeline
- jobs_timeline
- jobs_timeline_by_folder
- jobs_timeline_by_organization
- jobs_timeline_by_user
-
recommendations_and_insights
- insights
- recommendations_by_organization
- recommendations
-
reservations
- assignment_changes
- assignments
- capacity_commitment_changes
- capacity_commitments
- reservation_changes
- reservations
- reservations_timeline
-
routines
- parameters
- routine_options
- routines
-
search_indexes
- search_index_columns
- search_indexes
-
sessions
- sessions
- sessions_by_project
- sessions_by_user
-
streaming
- streaming_timeline
- streaming_timeline_by_folder
- streaming_timeline_by_organization
-
tables
- column_field_paths
- columns
- constraint_column_usage
- key_column_usage
- partitions
- table_constraints
- table_options
- table_snapshots
- table_storage
- table_storage_by_organization
- table_storage_usage_timeline
- table_storage_usage_timeline_by_organization
- tables
-
vector_indexes
- vector_index_columns
- vector_index_options
- vector_indexes
-
views
- materialized_views
- views
-
write_api
- write_api_timeline
- write_api_timeline_by_folder
- write_api_timeline_by_organization
-
gcp_billing_export
- gcp_billing_export_resource_v1
Monitoring models
The package provides the following datamarts that can be easily used to build monitoring charts and dashboards:
-
global
- daily_spend
- dbt_bigquery_monitoring_options
-
compute
-
billing
- compute_billing_per_hour
-
bi engine
- bi_engine_usage_per_minute
- bi_engine_usage_per_hour
-
cost
- compute_cost_per_hour
- compute_cost_per_hour_view (adds computed metrics)
- compute_cost_per_minute
- compute_cost_per_minute_view (adds computed metrics)
-
jobs
- most_expensive_jobs
- most_repeated_jobs
- slowest_jobs
- query_with_better_pricing_using_flat_pricing_view
- query_with_better_pricing_using_on_demand_view
-
models
- most_expensive_models
- most_repeated_models
-
reservations
- reservation_usage_per_minute
-
users
- most_expensive_users
-
-
storage
- dataset_with_better_pricing_on_logical_billing_model
- dataset_with_better_pricing_on_physical_billing_model
- dataset_with_cost
- most_expensive_tables
- partitions_monitoring
- read_heavy_tables
- storage_billing_per_hour
- table_with_better_pricing_on_logical_billing_model
- table_with_better_pricing_on_physical_billing_model
- unused_tables